Author: marko

American Wire Gauge Conductor Size Table

American wire gauge (AWG) is a standardized wire gauge system for the diameters of round, solid, nonferrous, electrically conducting wire. The larger the AWG number or wire guage, the smaller the physical size of the wire. The smallest AWG size is 40 and the largest is 0000 (4/0). AWG general rules of thumb – for every 6 gauge decrease, the wire diameter doubles and for every 3 gauge decrease, the cross sectional area doubles. Note – W&M Wire Gauge, US Steel Wire Gauge and Music Wire Gauge are different systems.

American Wire Gauge (AWG) Sizes and Properties Chart / Table

Table 1 lists the AWG sizes for electrical cables / conductors. In addition to wire size, the table provides values load (current) carrying capacity, resistance and skin effects. The resistances and skin depth noted are for copper conductors. A detailed description of each conductor property is described below Table 1.

AWG Diameter
[inches]
Diameter
[mm]
Area
[mm2]
Resistance
[Ohms / 1000 ft]
Resistance
[Ohms / km]
Max Current
[Amperes]
Max Frequency
for 100% skin depth
0000 (4/0) 0.46 11.684 107 0.049 0.16072 302 125 Hz
000 (3/0) 0.4096 10.40384 85 0.0618 0.202704 239 160 Hz
00 (2/0) 0.3648 9.26592 67.4 0.0779 0.255512 190 200 Hz
0 (1/0) 0.3249 8.25246 53.5 0.0983 0.322424 150 250 Hz
1 0.2893 7.34822 42.4 0.1239 0.406392 119 325 Hz
2 0.2576 6.54304 33.6 0.1563 0.512664 94 410 Hz
3 0.2294 5.82676 26.7 0.197 0.64616 75 500 Hz
4 0.2043 5.18922 21.2 0.2485 0.81508 60 650 Hz
5 0.1819 4.62026 16.8 0.3133 1.027624 47 810 Hz
6 0.162 4.1148 13.3 0.3951 1.295928 37 1100 Hz
7 0.1443 3.66522 10.5 0.4982 1.634096 30 1300 Hz
8 0.1285 3.2639 8.37 0.6282 2.060496 24 1650 Hz
9 0.1144 2.90576 6.63 0.7921 2.598088 19 2050 Hz
10 0.1019 2.58826 5.26 0.9989 3.276392 15 2600 Hz
11 0.0907 2.30378 4.17 1.26 4.1328 12 3200 Hz
12 0.0808 2.05232 3.31 1.588 5.20864 9.3 4150 Hz
13 0.072 1.8288 2.62 2.003 6.56984 7.4 5300 Hz
14 0.0641 1.62814 2.08 2.525 8.282 5.9 6700 Hz
15 0.0571 1.45034 1.65 3.184 10.44352 4.7 8250 Hz
16 0.0508 1.29032 1.31 4.016 13.17248 3.7 11 k Hz
17 0.0453 1.15062 1.04 5.064 16.60992 2.9 13 k Hz
18 0.0403 1.02362 0.823 6.385 20.9428 2.3 17 kHz
19 0.0359 0.91186 0.653 8.051 26.40728 1.8 21 kHz
20 0.032 0.8128 0.518 10.15 33.292 1.5 27 kHz
21 0.0285 0.7239 0.41 12.8 41.984 1.2 33 kHz
22 0.0254 0.64516 0.326 16.14 52.9392 0.92 42 kHz
23 0.0226 0.57404 0.258 20.36 66.7808 0.729 53 kHz
24 0.0201 0.51054 0.205 25.67 84.1976 0.577 68 kHz
25 0.0179 0.45466 0.162 32.37 106.1736 0.457 85 kHz
26 0.0159 0.40386 0.129 40.81 133.8568 0.361 107 kHz
27 0.0142 0.36068 0.102 51.47 168.8216 0.288 130 kHz
28 0.0126 0.32004 0.081 64.9 212.872 0.226 170 kHz
29 0.0113 0.28702 0.0642 81.83 268.4024 0.182 210 kHz
30 0.01 0.254 0.0509 103.2 338.496 0.142 270 kHz
31 0.0089 0.22606 0.0404 130.1 426.728 0.113 340 kHz
32 0.008 0.2032 0.032 164.1 538.248 0.091 430 kHz
33 0.0071 0.18034 0.0254 206.9 678.632 0.072 540 kHz
34 0.0063 0.16002 0.0201 260.9 855.752 0.056 690 kHz
35 0.0056 0.14224 0.016 329 1079.12 0.044 870 kHz
36 0.005 0.127 0.0127 414.8 1360 0.035 1100 kHz
37 0.0045 0.1143 0.01 523.1 1715 0.0289 1350 kHz
38 0.004 0.1016 0.00797 659.6 2163 0.0228 1750 kHz
39 0.0035 0.0889 0.00632 831.8 2728 0.0175 2250 kHz
40 0.0031 0.07874 0.00501 1049 3440 0.0137 2900 kHz

 

At high frequencies, a loudspeaker radiates sound directly forward in half space. At low frequencies, the sound is not direectional and radiates into full space. This results in a gradual shift in the frequency response of -6dB from the highs to the lows. This loss of bass can be modeled and compensated for. For more technical information on the subject see these great pages, Loudspeaker Diffraction Loss and Compensation by John L. Murphy and Baffle Step Compensation by Rod Elliott. The calulator below can be used to calculate a passive baffle step compensation circuit.


Speaker Baffle Step Compensation Cicuit Calculator

A Baffle Step Correction Circuit (also referred to as Baffle Step Compensation or Baffle Difraction Loss), can be used to solve the baffle step response problem of loudspeakers in free space. A schematic of the Baffle Step Correction Circuit is shown below. The Baffle Step Correction Circuit is placed between the amplifier and the speaker. For information and theory and examples of a passive baffle step compensation circuit, see Martin J. King’s article Simple Sizing of the Components in a Baffle Step Correction Circuit.



Where:

  • Re is the DC resistance of the driver voice coil [ohms],
  • Wb is the width of the baffle [inches],
  • dB is the amount of attenuation required [decibels],
  • f3 is the frequency midpoint of the transition from 4π space to 2π space,
  • Lbsc is the calculated baffle step correction circuit Inductor [mH] and
  • Rbsc is the calculated baffle step correction circuit Resistor [ohms].

You can use this online calculator to determine the value of the required baffle step correction circuit Inductor (Lbsc) and Resistor (Rbsc). To use the online calculator, simply enter Re, Wb and dB (the amount of attenuation required) into the boxes below and click the CALCULATE button. Use the CLEAR button to reset all the values.

NOTE: This online calculator requires that JavaScript be enabled on your browser.

Re [ohms]
Wb [inches]
dB [decibels]
f3 [Hz]
Lbsc [mH]
Rbsc [ohms]

 


An Impedance Equalization Circuit, also know as a Zobel circuit, can be used to counteract the rising impedance of a voice coil caused by inductive reactance. The cause of this impedance rise is due to the speaker’s voice coil inductance (Le). A schematic of a impedance equalization circuit (zobel) is shown below. The impedance equalization circuit is usually placed after the crossover circuitry.

Where:

  • Re is the DC Resistance of the driver [ohms]
  • Le is the Voice coil Inductance of the driver [H]
  • Rz is the calculated Zobel resistor [ohms] and
  • Cz is the calculated Zobel capacitor [F].

Use this online calculator to determine the required Zobel resistor and capacitor. Simply enter Re and Le into the boxes below and click the CALCULATE button. Use the CLEAR button to reset all the values.

NOTE: This online calculator requires that JavaScript be enabled on your browser.

Re [ohms]
Le [mH]
Cz [µF]
Rz [ohms]